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We derive a sequence of approximate solutions of the problem of the kinetics of 
the extraction of a solid material uniformly filling the volume of a porous par- 
ticle when it interacts with a liquid which selectively dissolves this material. 

We consider solid porous particles (Fig. i) which contain the desired component in the 
solid state. This component is extracted in the contact of these porous particles with a 
liquid which selectively dissolves it. As this component is dissolved and carried outside 
the particle by diffusion, the volume Q of the particle containing the desired component in 
the solid state is systematically decreased, while the region b containing this component in 
solution increases. In region b the material is transferred by diffusion from the interface 
r = ro to the outer boundary of the porous body r = R. 

Processes of this kind, widely used in the chemical industry and in hydrometallurgy, are 
called leaching. A mathematical model of this process involves the difficulties of salving 
problems with a moving boundary ro = ro(t) when the convective component of material transfer 
cannot be neglected. The assumptions made include the following: i) the particles are spher- 
ical; 2) the desired component is uniformly distributed over the volume of the particle; 3) 
the diffusion is isotropic (mass transfer by diffusion is the same in all directions); 4) 
there is no external diffusion resistance; 5) the concentration of the component at the outer 
boundary r = R is constant; 6) the liquid filling the porous structure of the body has a con- 
stant density. 

The first results, published in 1951 by Piret et al. [I], established an approximate re- 
lation for the position of the interphase boundary ro at any time t in the form 

Dt r o ~ s  -- CA I (Po .~ ~ =2~, T=-- %==--, ?= 

6 2 -~ R 2 ' R PA. -- ~cAs 

In 1959 Aksel'rud [2] used an integral relation to derive the result 

6 2 , - -  - ~  (In % § % - -  ~ ) ,  

PAa --- s + (1 - -  e) CA1 

This result has the advantage of encompassing a wide range of variation of the parameter 
o*, including o* = 0 which corresponds to the extraction of a soluble material with an ini- 
tial concentration CAS [3]. In 1981 Protod'yakonov et al. [4] treated the problem by making 
the following assumptions, which are by no means self-evident: i) the radius ro decreases 
linearly with time ro = R -- at; 2) the amount of dissolved material M leaving the interphase 
surface is determined by dM/dt = ~4~roc $2 instead of the generally accepted dM/dt = 

--D4~r~I @c ~ ~ It is debatable whether the mass-transfer coefficient B can be introduced 
ar / . . . .  I "  

when material transfer is of the nature of molecular diffusion. 

In the present article we present two types of results: The first is based on the di- 
rect integration of the differential equation of convective diffusion, and the second on the 
use of an integral relation similar to that employed in hydrodynamics (the Karman-~ohlhausen 
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Fig. i. Schematic diagram of a porous 
body in the process of extraction of a 
soluble solid. Region (g) contains the 
desired component in the solid state, 
and region (b) in the dissolved state, 

method) [5]. The concentration field of the desired component c A in the continuously ex- 
panding region b is determined by the system [6] 

ac A 
- - ~  -[- (U.VCA) = DAc A, 

(v"~) = 0 

or in expanded form in spherical coordinates 

OCA OCA 1 o 
- - ~ + u , - - - - D  

dr r 2 ar 

l a 
( r2v , )  = O. 

r~ Or 

The boundary conditions on the outer and moving boundaries are written in the form 

r = R ,  G = q ~ ;  (2) 

r z fO, ~ ~ CAS ." 

The v e l o c i t y  of  the moving b o u n d a r y - - d r o / d t  i s  de te rmined  by a n a l y z i n g  the  mass f l u x e s  
of the desired component and the solvent 

ac A aOB 
n A = e A r - -  D A s - - ,  n B = eBv ---DBA - -  

Or Or 

I t  f o l l ow s  from Fig.  i t h a t  

(nAdt),=ro = - -  (PAd - -  CAS) dro, (ngdt) . . . .  = (ORS - -  PB~) dro" 

Combining and using the familiar relation (F6A-~l~B)r=ro~PSOr=ro [6], we obtain 

( O r . - - 1 )  dr~ 
u . . . .  = - -  Ps dt ' 

(3) 

(4) 

(5) 
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where Pt = PAa ~ ~)~,~" 9S == CAS J7 CeS. The simultaneous transformation of Eqs. (3)-(5) gives 

where 

y ==: 

d~o _ D ~  ( o~ I , 
dt CAs--CAI \ Or 7,. .... 

CAS - -  CA I CAS - -  CA 1 

PA~ -- CAS p---~ OS / 

(6) 

(7) 

It follows directly from the second of Eqs. (i) that 

(8) 

We now have sufficient material to reduce Eqs. (i) to a form suitable for integration. 
We introduce dimensionless parameters, a dimensionless function and arguments by the rela- 
tions [7, 8]: 

D Aet r r o CAs -- CA 
"c . . . . .  , q3- , % : :  , ( O =  qo , 

R 2 R R CAS - -  CA 1 

I--~ , y = l _ _ % ,  v =  p L ,  ( P, - - 1 )  ( 1 - -  e) = v - - 1 ,  
o -- 1 - -  % Ps Ps 

after which we find that 

- - - -  o - - - - . V  + ( v - - l )  . _ _  (9 )  
0o 2 - Y \ - ~ - o  =I l - - y `  0cr -~-y)  ( 1 - - o y )  ~ l - - - o y  -F ' 

q) = �9 (~, v), ~)(0, v ) =  1, (1)(1, v ) =  o, (io) 

dq)o _ + y I (~(D) (ii) 

dT ( l - y )  y ~ = ~ "  

Equations (9)-(11) can be solved numerically, but an approximate analytic result can be 
obtained by using the fact that in the important practical cases y = 0.01-0.5: 

q) (o', Y) = (Do + 761)t + ~72t'1)2 + . .  �9 (12) 

The function @o is determined from the equation 

gives ~ o - - 1 - - - ~  or 

0~D~ = 0 with boundary conditions (10),which 
002 

1 q)_f_o 
CAs - -  c A 

cAS -- CA~ 1 - -  % 

( 13 )  

and substitution into (ii) leads to the final expression 

2 3 

6 2 ~- --3-= Y~' (14) 

which is valid for y ~ i, and differs from the result in [I] in the value of y. Further re- 
finement involves the determination of the function @i by the substitution of @o = 1 -- o in- 
to the right-hand side of Eq. (9) and the subsequent integration in the boundary conditions 
@I(0, y) = 0 and ~i(i, y) = 0 [7]. After performing all the operations we finally obtain the 
second approximation 
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Fig. 2. Dependence of relative radius ~0 on dimensionless time for 
a) y = 0.3 and b) y = 0. i: i) Eq. (14); 2) (15); 3) (20); 4) (22). 

�9 6 2 • ~ 6 3 (]5) 

• = t - -  O, S ?  (v  - -  I). 

We t u r n  t o  a c o n s i d e r a t i o n  o f  a m e t h o d  o f  s o l u t i o n  b a s e d  o n  t h e  u s e  o f  t h e  i n t e g r a l  r e -  
l a t i o n  

R 

d (+~rz~ if- ; cA4~Odr I ~--D~s4aRa(  OVA 1 q- CA:4~Rz. 
ro 

(16) 

The left-hand side of Eq. (16) denotes the change of mass content in both zones of the porous 
particle. The right-hand side shows that the reasons for this change are the diffusion of ma- 
terial and its removal by the solution moving with the velocity Vr= R. By introducing the 
dimensionless concentration c* = (c A -- CAI)/(cAS -- CAt) and the other dimensionless variables 
mentioned previously, we obtain the relations 

l 

d'v (1 q- yv) q- y c*q)zdfP = ? \ Oe? Ir 
@o 

c* = 0  for q~=  1, 

c* ~ 1 for qo----qo o, 

(17) 

(18) 

dcpo ( Oc* I . (19) 

The use of the integral relation (17) is based on a rough approximation of the distribu- 
tion c* (*) in the range ~0<~<I, which satisfies boundary conditions (18), substitution into 
(17), and the subsequent performance of all the operations. If we take 

1 

l 

% 

as the approximating function , the final result takes the form 

1 

I ] + ~ ( ~ - - l ) l  6 
~o + ~4~ _~ 
2 - y - )  - O n  ~o + '~o - q~)  = vT. 

Another version is based on the substitution of the distribution 

(2o) 
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C*----~q 

- i-1 _L _ 

into the integral relation and the boundary condition (19). 

----Ii )~' (21) 

As before, this distribution 
satisfies conditions (18), but contains the parameter ~. We obtain 

II + ( v - - 1 )  71(, 6 2 3 ) Y ( I n % -  

/ 

l ~ + ~p~ 
6 2 y=v(2-n),. 

(22) 

(23) 

The calculation of the mass content of the desired component A leads to the expression 

M___ ~ r + c,~__ i, (1 - -  ~pao) + CAs - -  CA ' 
Mo P A~ 9 A~ 

+ (1 --n) q~ (1 -- %) ] . (24) 

The parameter ~ can be chosen so that Eqs. (22) and (23) give nearly the same result. For 

2 3 

s, allvaloos ,,, be dorLe by  quating c o e f f i c i e n t s  of  ( ' We ob- 
t a i n  6 2 

1 + y (~  - -  1) 
n ----, (25) 

I + 0.57 (,~ -- 1) 

A more accurate result is based on approximation "in the mean" by using the relation 

I 

f ['q (q, %) -- ~.-~ 0], ~o)] cl% = o, (26) 

where Tt is determined from Eq. (22), and T2 from (23): 

6 + 2y -> 3-~, (v -- 1) ]/I//- 8? [3 § 3y (v -- 1) + 4yl 
q:= 1 1 -[- 

27 [6 + 2y + 3y(V-- 1)p 

from which it follows that qv+0 ~ I and qw~ ~2 , since y(v--l)--const for all values of 
s. The advantage of Eq. (22) is that it is approximately true even in the special case 
y + ~, E + 1 (extraction of a dissolved material with an initial concentration CAS). From 
(22) and (24) we obtain 

{ 1 n % - - % +  1 = - - 6 ~ ,  

M ~ =  %, (27) 

which is close to the exact solution [9] over a wide range of variation of T. Figure 2 com- 
pared all four results obtained for v = 2 and y = 0.3 and y = 0.i. These curves show that 
(14) is acceptable only for y < 0.I. 

NOTATION 

R, radius of sphere; r, running radius; ro, radius of sphere containing desired compo- 
nent in the solid state; D, diffusion coefficient: t, time; CA, concentration of desired 
component; cAS , saturation concentration; CAl, concentration at surface of sphere; s, poros- 

540 



ity in region a relative to porosity in the region b; PAa, volume density of desired compo- 
nent A in region a; PAc = CCAS + (i -- c)pT; PT, density of desired solid component A; PBa, 
volume of solvent in region a; PBa = CBsS;Pt, average density of two-phase system; Pt = OAa + 
+ PBa = OT(I -- s) + PSi; ON, density of saturated solution; CB, concentration of solvent; 
CBs, concentration of saturated solvent; n A, flux density of component A; n B, flux density of 
component B; v r, mass average velocity of liquid. 
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HEAT TRANSFER IN BOILER FURNACE, TAKING ACCOUNT OF THE 

SCATTERING OF RADIATION 

Yu. A. Zhuravlev, I. V. Spichak, 
M. Ya. Protsailo, and A. G. Blokh 

UDC 536.33:621.181.7 

A method of zonal calculation of the radiational heat transfer in scattering 
media is outlined. The influence of scattering of the radiation on the heat- 
transfer coefficient in a furnace is considered. 

The presence of a large number of particles (coal, coke, ash in the combustion of coal 
dust; soot in the flame combustion of natural gas and oil) suspended in high-temperature 
flows of furnace gases creates the preconditions for radiation scattering. Therefore, it is 
of practical interest (especially in connection with the appearance of detailed information 
on the radiative characteristics of dust flows and luminous flames; see [1-3], etc.) to solve 
the problem of external heat transfer, within the framework of the zonal method, taking ac- 
count of scattering in complex three-dimensional multizonal systems filled with an emitting- 
absorbing and scattering medium. 

In the present work, the zonal method is used to investigate the combined heat transfer 
in a furnace chamber of a BKZ-320-140PT boiler. Isotropic scattering in volume zones is tak- 
en into account using the method developed earlier in [4]. In calculating the heat transfer 
in real aggregates, it is necessary to take account of the complexity of the scattering in- 
dex in volume zones and the reflection coefficient at boundary surfaces. Generalization of 
the method of [4] to the case of anisotropic scattering of radiation and nondiffuse reflec- 
tion- in the presence of both diffuse and nondiffuse components in the reflection of radia- 
tion from surface zones (R - R dif + Rnondif), there are both isotropic and anisotropic compo- 
nents in the scattering at particles in the volume zones (8 = B is + ~anis) -- may be accom- 
plished using the following system of linear algebraic equations 
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